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1 In t roduct ion

Scalar-tensor (S”1’) theor i e s  arc a]tcrnativc  Inoclcls of gravity  which provide a thcoretica]

framework within which gcmcral relativity (Gli) may bc tested. hfany important tests so far

have USCCI  the post-Newtonian approxilnation,  and llavc  relied upoIl  corrections to dynamics

in the solar systcm. Such tests force S’1’ theories to limits where they greatly rcscmblc  (l]{.

I’or cxamp]c, IJIC current linli~ 011 IIrans-llickc  thcorics[]]  rccjuircs  w > 500[2], where w + w

rccovcrs  G]{ and w w 1 would Lc a natural va]uc  to expect a priori.

Ilowcvcr,  clcspite  the strong resemblance to G]{ in our solar systcm,  gravity may bc rad-

i call y diflercnt in other rcgitncs,  l’he gravitational ficlcl  in our solar systcm is weak, scvcrcl  y

limiting the parameter space of gravity tested. ‘J’hcorics  which clificr from Glt in strong

gravitational fields, but agree with solar systcm constraints, arc IICCCICC1  to further test GIL

]tcccntly,  a class of ST theories with multiple scalar fields has been propose d[3]. ‘1’hcsc the-

ories can satisfy the solar system criteria to arbitrary accuracy, but  still clivcrgc from Gl{ in

other limits, for example in the strong field regime around  binary pulsars. ‘l’bus, such theories

provide an important test of GR in a previously sparsc]y tested regime.

Aside from their importance as gcneralimtions  of standard S’1’ theories, multiple scalar

field theories have a second motivation. Such aclditiona]  scalars coup]cd  to gravity appear in

Kaluza-Klcin[4]  and string tJlcorics[5]  which seek to unify gravity with other forces. ‘1’ests  of

the correctness of GR, thus provide constraints on such theories. l“urthcrmorc,  S’1’ theories

combined with Grand Unified ‘1’hcories  can  provide adjustments to inflationary modc]s of the

early univcrsc[6]  which allow the plmsc  transition to comp]cte  in OICI inflation [7] and remove

the fine-tuning of ncw and chaotic models[8].  ‘1’he inflationary universe not only SOIVCS several

longstanding cosmological problems, but also  proviclcx the only  currcnt]y known source of seed

dcnsiiy  fluctuations which obey tllc magnitude ancl sl)cc.trum  of the microwave background

found by CO IlIt[9].  While these ‘(extended)’ versions of old inflation arc scvcrcly  constrained

by the solar systcm tests[l  O], multiple ST models may oficr  succcssfu]  conditions for inflation

which still obey all observational tests. ‘1’1111S,  Wc seek the viability of inflai,ion  in mu)t,iplc

field models where the solar system constraints may bc avoidccl.
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In this paper wc consider a particular set of multip]c  scalar S’1’ theories which arc a straight-

forward generalization of nonminimally  coupled models. OUr starting action  will k cliflerent

from those used prcviously[3],  where the action was t akcn  after a con formal transformation

had been made so that the gravity sector appeared normal. ‘1’hc  one-field nonminimally  cou-

plcc] model is related to the Jllll  theory by a redefinition of the scalar field. We initially

consider a model with an arbitrary number  h’ of scalar fields, and derive the conditions ncccs-

sary to meet the solar systcm constraints, ‘J’hcxc  conditions depend on the asymptotic values

of the fields  far from the solar systcm.  l’rcvious  work used the ansatz that these values were

O, which dots indeed satisfy all ccluations. ]Iowcvcr, the actual values of these fields should

bc set by  their cosmological evolution.

In order to study their cosmological evolution, wc first find a generic set of solutions which

exhibit power law behavior, and give exact solutions in the clust,  radiation, and cosmological

constant dominated eras, Next, wc specialize to a two-field moclcl,  which elucidates the main

features of the behavior, !i%e stability of these solutions in time is then examined, and small

deviations are found to diverge from the exact powc.r  law behavior as the universe expands.

Hence, while solutions of multiple field S’1’ theories arc possible which meet the solar system

constraints and field  equations for cosmological evolution, they arc unstable. q’his finding

calls  into question the ability of these modc]s to provide a true test of GIL We close wit]]

comments on the possibilities of success of these theories and their potential role in inflation.

2 IV Field Models

WC begin by considering the action

(2!1)

where ~ is an N component scalar field WI1OSC individual components will be denoted with

capital Roman letters, U is a potential, GAB describes the kinetic coupling of the fields, and

1.,,, is the I,agrangian  for other matter. All other convcnt,ions  arc identical to those of hlisncr,

Thorne  and Whee]er[l I]. j(+) = G s 1 /K2, where G is Ncwtoll’s constant, rccovms G]{ Jvitll



scalar fields, while j(~) = (+2 with # a singlet  is the standard  IIonnljnjnlally  coupled model.

Making the field redefinition @ = ~42 for singlet 4 places LhC action  into  standard  l~rans-llickc

form .

varying  this action wit}]  r~spect  to the lnctric gives the gravitational field  equations

wit]] !I), U the cllcrgy-lllolllclltuln  tensor corresponding to 1,,,1. ‘J’hc  trace of this equation is

Varying with respect to ~ gives the scalar field equations

fAli + 2GAB~~B – 2[JA == 0, (2.4)

with a subscript A referring to the partial clcrivativc  ~/8$%A. We first examine L]IC so]ar  syskm

constraints before moving to the cosmological evolution of these fields.

2.1 solar system constraints

To lowest order in the post-Newtonian approximation, the metric around a body of mass A4

in the solar systcm  is[l 1]

“2=-(] -?%’+” (] +-2~+)[’zx2+d~2 +dz21
(2.5)

where ~ = 1 rccovcrs  the value in G}{.. in the J]]]) theory, T = 1 +- w/(2 + W) and currcllt tests

from the Viking lander give y > 500[2].

WC will use the (00) and trace equations to dctcmninc  the expression for T in the theory

of equation (2.1). Note that

whcm summation over A and 1; is implied, ‘1’o obtain this last approximation, wc removed

the first term by using the fact that V@ = 0(.i14) and liccping only lowest order in f14. ‘1’hen,

making use of equation (2.4), we find
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~’he matter source for the solar systcm  bodies  will bc talien to bc pressurclcss  dust, with

delta function stress-energy terms. Making usc of the rcprcscntation  of the dc]ta function by

V 2(1 /r), wc thcrcforc write

( )
Too= –+2 : , Y;j =  0, 7’ ==

( )
+2 ~- .

1’

Again, to lowest order, the ncccssary  curvature componchts  arc

( )
l$~o =  +goo == – V2  : ,

( )
1/ = 2(1 – 27)V2 ~

1’

The (00) equation then implies

2.8)

2,9)

where G is Newton)s constant. If we take the case [J = O, which we will consider  throughout

the rest of this paper, and define

C ~ .fAG;~j~, (2.11)

then we find

C – 27(f 4 C) =: –2G’. (2.12)

Similarly, the trace equation yields

(2j + 3(7)(1 – 27) == –2G. (2.13)

Combining these two  equations then gives

j+c
7= J4-2C” (2.14)

g’hjs theory will bc identical to GR for solar system Lcsts if T == 1, which then implies

As long as the coupling satisfies this last relationship, multiple S2’ theories can exactly rcplicatc

GR in the solar systcm  without being idcntica]  to G]{. ]Iowevcr,  theories which satisfy (2.15)

may still be quite different from Glt in other gravitational regimes. ‘1’his  behavior is in

contrast to single field ST gravity, where the solar systcm constraints force the cnt,irc  theory

to bc indistinguisha.b]c  from Glt.
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Of course, T need not be exactly unity, but nmd only satisfy the current cxpcrimcntal

l imits .  ]ndccd, nature may dictatc that T is not 1 but only somcduc CIOSC  to 1, in w h i c h

case Glt would fail. If this should bc the case, both single and multiple S’1’ theories could

meet the ncw constrain with a C that is a small but nonzcro value, while higher order effects

would  cause a larger discrepancy with Gli in other regimes,

Whether the condition of equation (2.15) can bc met dcpcnc]s  on the values of the scalar

fields, Indeed, if C’ = O, then equations (2.12) and (2,13) demand that  j be cclua] to the

gravitational constant, setting another condition. Setting the background value of the fields

to zero certainly meets these conditions, however, these values arc actually dctcrmincd  by the

cosmological evolution of #, to which wc next turn our attention.

2.2 cosmological  evolution

For  cosmology, we use a spatially flat ltol>crtsoll-JVall;cr  universe, with metric given by

ds’ = –dt’ + a’(i) (dx’ + dy’ +- dz’) , (2.16)

where a(i) is the time dependent scale factor. From the (00) component of the gravitational

field  equations (2.2), we get

(2,17)

where 1{ s ti/a  is the Hubblc  parameter, p is the energy density, and an ovcrdot  indica.tcs

diflcrcntiation  with respect to time, ‘1’hc trace equation gives

f(6il + 12}12) + G~Bqi,&] – 4U -t 3f +- 911j = 87T(P – 3P), (2.18)

where P is the pressure of matter, which is assumed to bc a. perfect fluid. Finally, the scalar

field equations, (2.4), yield

with the RI cci scalar given by

Ii== 6~1 + 12112

r,
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Onc equation of the set (2.17) - (2.19) is extraneo~ls  d~lc to the Symmetries of the Spacetime

and the contracted IIianchi identities.

d u s t  e r a

in the current dust dominated universe, with U = O, the constraint for the solar system

(2,1 5) must be satisfied. Contracting equation (2.19) with .fA gives

f~nc#),’1 = –;fmi;fd~ = o, (2.21)

a rather strong constraint on the behavior of the scalar fielcls  in a dust universe. The limits

imposed by the null summation (2.21) will be more obvious when wc consider a two field case

in the next section.

To better understand this constraint, wc consider particular choices for f(~) of the form

f(d) = f. ~“ ~Al?d’Ad’J3, (2.22)

with  jC and FAB cons tan t . This model is a straightforward generalization of the standard

one field nonminima]  coupling. ‘l’here are no added climensional  coupling constants. Only ~C,

which corresponds to a modified gravitational constant, has dimensions,

llccause these equations are nonlinear, general solutions will be difTcult, if not impossible,

to obtain. We therefore look for power law solutions, by making the ansa.tz

1P

( )
a(i) = (1C ; ,

( )
CjA=.bA ~q, (2.23)

c c

where aC, iC, LA, p, and g arc al] constants. lror GR, wc know that the cosmological  expansion is

power law, with p being 2/3 and 1/2 in the dust and radiation regimes, respcctivc]y.  Although

this power law assumption restricts the generality of our solutions, the problem dots become

tractable. The dependence of the solar systcm constraints upon cosmological evolution is

manifested, a feature missing from just a constant ~ solution.

With the above simplifications, equation (2.2 I ) gives

(2.24)

This equation is solved either by q = O, q = 1 – 31), or J’A~bAb~  = O. ‘1’he last condition causes

j to bc constant, f = f. = G, The gravitational constant C1OCS not, evolve. ‘1’llc first conclitioll,

(i
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q = O, corresponds to constant fields, while tl]e  miclclle  condition relates the evolution of the

fields to that of the scale factor.

Wc now examine the scalar field cc]uations,  (2.19), which imply

hA(q2  –  q+- 3]Jq) == G;~&d@(-6j} +- ] 2]~2). (2.25)

If q equals  either O or 1 – 3p, then the left  hand side must bc O, giving y = O or p == 1/2. ‘1’hc

first case corresponds to a static universe, in conflict with observation, and will be ignorccl.

We thus retain only p = 1 /2 .

Next consider the (00) equation, which for power law behavior bccomcs

g[w!(&)2g]-g(:)2’  +-yq:)2g=~I(:)’ 3p, (2.26,

in the dust era. As noted from equation (2.25), if q = O or q = 1 — 3p, then p = 1 /2. IIowcvcr,

plugging these values into equation (2.26) shows that the (00) equation cannot bc solved,

because the powers of time will not balance. ‘J’hcrcfore,  of the three possible solutions to

equation (2,24 ), only the last one, Ii = O, has the possibility of being consistent with both

an expanding universe and the other field equations..

Now, equation (2.25) implies that

--6p + 12p2
Gd=————-); = o .

qz – q i- 3pq

Using the fact that both ~d and Gd are zero, the (00) equation simplifies to

(2.28)

(2.29)

idcntica]  with the GR case. Thus, because of the cancellation ncccssary  to meet the solar sys-

tem constraint (2. 15), the dust dominated universe rcscmblcs  G]{ in all cosmological aspects.

IIowcver,  this dots not mean that otkcr  cosmologics,  such as a radiation dominat,ccl  universe,

ncccssari]  y resemble G 1{., as we shall sec bc]ow.

radiation era
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For a radiation dominated universe the energy  density is given  by

p(i) = pra4(i), (2.30)

with pr a constant, and P = p / 3 ,  Sillcetllc  currel~t  ~llliverscis]lot  racliaiion  dominatecl,thc

solar system constraint, equation (2. 15), ncccl not apply. Ikcausc the stress  energy tensor f o r

radiation is tracclcxs,  the trace equation,

is most convenient to consider first. llcrc i, is a constant, ancl l’; and G, correspond to the

quantities (2.27) in the radiation era.

Balancing the powers of time then requires that p = 1 /2, exactly as in the standard

G]{. case. With this value, the first term in equation (2.31) vanishes, and the resulting time

independent part is solved by

_ –3};
q=o,

‘ r  ‘–  G,+12F;  ”
(2,32)

W C then plug this result into the (00) equation, which is identical with equation (2,26) except

with a right hand side
%pr t -41’

( )
—  — (2.33)@ tc “

If q = O, then the fields do not evolve, and

(2.34)

This is similar to the Einstein GR case, except that the gravitational constant is shifted by

P,.

When q = –3J’l/(G, + 12F,), the (00) equation that rcsu]ts  is solved by any onc of tllrcc

conditions, These arc
1’; == o * q = o
Gr=O + q=–l

f
(2,35)

G, = –6); + q=–~.

!l’his first case just reproduces the q = O case above, ~’he latter two conditions cause cancel-

lations  such that

3 th’rpr ~’—= —
4K,2 ~$ r’ (?.36)
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which is exactly the same as in

equation.

hluch as with the dust case,

GIL  All of the above solutions also satisfy the scalar field

hcsc  solutions strongly rcscmblc  G]{., CIUC to cancellations of

the scalar field terms. If the scalars arc constant during the radiation era, the gravitational

con st ant may bc shifted. ‘1’his  may have observable conscqucnccs  on nuclcos  ynthcsis, for

example. llcviations  from exact liobcrtsoll-W~all{cr  behavior, cause d by primordial black ho]is

or density fluctuations, could also lead to regimes wl]crc  the scalar fields play a more dynamic

role.

cosnlological  cons tan t  e ra

When the universe is dominated by a cosmological constant, the matter is given by

p = po = constant, r’ == –p. (2.37)

Such a situation arises, for example, in the inflationary univcrsc[6],  where p. is the energy

density of a scalar field either trapped in a false minimum or slowly rolling down a potential.

‘1’he (00) equation again is similar to (2.26), cxccpt  that the matter side is now given by

&rpo,  and li and G~ are replaced with the appropriate 11~ and Go in this regime. Nxamining

the powers of time, there are three, namely –2, 2q – 2, and O. Unlike the previous matter

conditions, where the right  hand side had p dcpendcncc,  these khrcc  powers cannot in general

bc matched ]. However, we may find approximate solutions to the general case by assuming

that onc of the two terms dominates gravity.

If the fields are small, then the gravitational constant may dominate the field contribution,

1 /K2 >> F’AB~A~B.  Neglecting terms involving the ~ then gives the standard GR. equation

3112 =“ 8rrK2p@ (2.38)

which is solved by

a(i) == ao Cxp [{~”;@ ..,o,]. (2.39)

1 ‘i’here is one exception. An exact solution can he found if ll)c  terms of power 2q – 2 in the (00) equation
cancel. In this case, equation (2.38) is again valid, and exponential solutions for the scale factor a(t) and the
~ arc found. Dy using the (00) and # equations, these conditions can all consistently bc met if G’O = –411’o
and q = H(-3 + ~)/2. However, this exact solution is really a special case of our first ap])roximation,  (2.38)
- (2.41), when the terms ignored exactly cancel.
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‘1’his  exponential growth corresponds to an inflationary universe. ‘J’hc  scalar field equations

give

6112FAB4B – GAB(4B -t- 311~~B) = O. (2,40)

Contracting with 4A and solving  the rcsu]ting  equation gives

(2.41)

as a solution. ‘1’bus, for the small fielcl  approximation, the {~ may grow, decay, or oscilla.tc.

If the # arc large compared to the gravitational constant, then a

growth  of the scale factor and fields gives for the (00) equation

(
‘2 GO + 6pqF03p2fi~  – y

)
t2q-2 = %poi:q.

power law ansatz  for the

(2,42)

Rquating  powers of time demands q = 1, so the fields  grow linearly, and remain dominant

over the G]{. term. Combining the field equations with the time independent part of the (00)

equation gives two possibilities:

q’hc first  case gives a static universe, while the second has the power of expansion depending

on the parameters of the theory. For p > 1, the second could give rise to extended type

inflation [7] if the phase transition is first order, or soft inflation [8] if the potential is slowly

rolling of either the new or chaotic type,

An exact solution can bc found if the terms of power 2q – 2 in the (00) equation cancc].

In this case, equation (2.38) is again valid, and exponential solutions for the scale factor a(t)

and the @ are found. By using the (00) and @ equations, these conditions can all consistently

be met if Go = –4F0 and q = 11(–3 + ~)/2. in fact, this exact solution is really a special

case of our first  approximation,  when the terms ignored exact] y cancel. ‘

In the inflationary scenario, the potential of a scalar field acts as an effective cosmological

constant to drive the expansion. For Go > 2F0,  equation (2.43) gives power law inflation. If

the potential is of the new[12] or chaotic[l  3] type, then this solution is a gcncralizatio]l  of tllc
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soft inflationary sccnario[8].  In soft inflation, modifications of Einstein gravity can remove

the fine-tuning of potential parameters found in regular gravity. The same situation can arise

here, with the added advantage of avoiding the solar system constraints.

IVIOrC  interesting is if the potential is of the old infiation[]  4] type, giving rise to a first order

phase transition. Simple nonminimal  coupling allows the phase transition to complctc[7].

IIowcver,  to avoid an overproduction of big bubbles of true phase, which would produce an

cxccss  of microwave background an isotropy, requires parameters whicl) viol atc the solar systcm

constraint. Our theory can avoid this problcm, and can do it with parameters which exact]y

reproduce GR in the solar system regime, Unfortunatc]y,  as shown in the next scctiol~,  the

models which reproduce Qzlt are unstab]c  in the dust ma.

3  T w o  F i e l d  C a s e

Studying the IV field case has the advantage not only of Lcing  general, but a)so of allowing

compact not at ion. Iiowever,  the interrelationship of parameters in these models can bcco]nc

obscured. We next consider the simpler case of a two field model to bcttc~ elucidate such

features, which include some stability problems. ‘J’hc action for two fields, in analogy with

equation (2.1 ), is

A derivative cross term could also exist, but a proper rot,ation  of the fields wjl] c]iminate t]lis

tmn, so wc set it to O without loss of gencra]ity.

The solar system constraint,

(h~w + 4h;q)&

which may bc rewritten as

equation (2. I 5), now bccomcs

+ 41L3(hl 7/ + h2w)40 + (h:?j +- 4h;w)@ = o , (3.3)

T)(h34 + 2h]f#y + w(h~fJ +- 2h2t/))2  = (), (3.4)
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Therefore,  u and q must bc opposite signs, We choose w to be positive. Ibihcrmore, by

resealing the fields in the original action, these kinetic constants may bc chosen to be w = 1,

7] = – 1, without any loss of generality. g’hus , one important fact clearly shown in the two

field case is that  multiple scalar tensor theories must have negative kinetic terms if they arc

to agree with post-Newtonian tests of genera] relativity.

From the relation (3.4 ), onc can also scc the interplay bctwccn the kinetic terms w and

?], the coupling to gravity through the Itij and the values of the fields thcmse]vcs.  Again,

the asymptotic values of these fields are determined by cosmology, and specifically, by their

evolution in the present dust era. We now study tl]at evolution to derive further constraints

on the parameters of the theory.

In a llobertson-Walker  universe, the field  equations become

(2h,4 + h31J)(3i3  + 6112)  - (Cj + 3Hj)) = o

(2h,?J! + h34)(3il + 611’)  + (j -t- 3Hlj) = 0.

Again, we make the assumption of power law behavior,

t?J()a(t) = a. ~ , qi=b(;)q,
( )

lj=c : ‘ .
c c c

The field equations (3.5) then combine to give

]13 ==
–2(}LI + h’)be

b2+c2 “

Substituting this relationship back into the solar systcm constraint (3,2) implies

b = &C,

(3.5)

(3.6)

(3.7)

(3.8)

which also yields the relationship bctwccn  the hi

//3 = +(hl + hz). (3.9)

These conditions also mandate that j = 1 /K2 in the dust era, as noted earlier for N fields.

l’he (00) and trace equations for the two field case become

3H2.f  -t- 311j  – ;(q!?  – J)’) = Mp, (3.10)

(6~3 +- 12H2)j +- 3] +- 911f + q!J2 - $~’ = t%r(p - 31’), (3.11)

[ ‘)



respectively. As in the N field case, power law solutions exist. In dust, the universe will

expand with power 2/3 just as in G]{, and ihc same relation for the energy  density, (2.29),

still holds. !l’he power q at which the fields evolve is

(3.12)

g’hc solutions for two fields in radiation and cosmological consta,nt  dominated universes also

procccd  in analogous fashion, and arc easily obtainable from the more general AT field case by

substituting tl]c  appropriate expressions for l’ and G.

4 Stability Analysis

While ihc above solutions arc exact, a crucial aspect of the system’s behavior is whether

these solutions arc stable. Only exceptionally fine-tullcd solutions will start with exactly the

initial conditions to fit the form of the above solutions. l~urthcr, any slight physical fluctuation

can move the system away from the exact solutions. Only solutions which return to the exact

behavior when deviating slightly will likely  bc realistic. W C therefore examine the evolution

of initially small perturbations about our power law solutions for the two field case in the

current dust universe.

W C start  by writing the dust solutions for the case b = c, IL3 = – (hl + }Lz) as

()i ‘[l i (,(t)],a(i)  = ao ~-

d(~)  = ~ (;)’ [1 -+ c2(~)],

( )
?/)(i) =  c ; ‘ [ 1 +  Q(t)], (4.1)

where ~i << I and q is given by equation (3. I 2) above. ‘1’hc  scalar ficId cquatiolls  then bccomc

[

4]11 1— – g(q + 1) 3–2(9+-1);  –:2– 2@’; “~;+- [qh]  – h2) – 3q] $+3(111  –h2):l = o,
3

(4.2)

[

4hz 1 2(}1, +  h2) C~
.

–—–q(q +-l) ~–2(g+l)~–~3+
3 3

~+[s(~~l –  hQ) –  3q] ~+3(h] –hQ)i; =  O ,

(4.3)
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while the trace and (00) equations give

[

. .

(12q2 + 69 + :)(hl - h2) +- 2q2] ‘~ +- [6(2q + 1 )(hl  – h’)+  Vq] ‘~

Ii - ’ 9  461

( ) [

IGc’,
+3(hl – h~)(<’ – ~3) +  ~ < ~ + 1~ + 6G = O,

-’9 4q
(6q’ +  7 q2  +  2q)’2 ; ‘3 + (3q2 - t  29)(<’  -& ) +  ;~ (:) (~+ 4~1) = 0.

l“irst  consider the case of G]{., with 4 = @ = 0. ‘1’hc  trace equation then gives

‘1’his  equation is solved by

Al A2

~1=~4-*’

(4.4)

(4.5)

(4.6)

(4.7)

with Al and  A2 constant. q’hc perturbation to the scale factor decays in time, ancl hcncc GIL

is stable, as cxpectcd.

Now, consider the perturbations of the scalar ficlcls.  Subtracting onc scalar field equation

from the other gives

2
G’ + ;(q -t- l)ci3 = 0, (4.8)

where 623 = ~2 — E3 and equation (3,12) was used to remove the G23 term. ‘1’his  equation is

SO] vcd by

E23 ~ Bt–’g-]  = ~jt~~%–hl) q#–~,
Dllli

(4.9)
C’3 ~ q= —z,

with II a constant. For the q = – ~ case the pcrturba.tion  grows logarithmically, and t}]e

scalar flclds  are unstable. When q + — ~ there are two roots, onc of which grows in time with

positive power. In general, the scalar fields will pick up a combination of these two roots, with

coefficients depending on initial conditions in the dust era,. ‘1’]lus, the perturbation G’3 will

generally have a component which  grows in time, and hcncc  the scalar fields arc unstable.

q’hat  the solutions arc unstab]c  is not a surprise, for onc of the fields has a negative kinetic

term. Such kinetic terms cause instability by allowing for infinitely many negative energy

states when the system is quantized. g’hcy also can lead to the classical instability observed

here. In addition, our power law solutions inc]udc  Lhc case where the fields arc zero far

from the solar system, which arc the va]ucs  used in Ot,ller  work  [3], so t]la(,  t]lCWC  Va]l]es  (OO

1 1
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may Lc unstable to perturbations as the universe evolves. ]Icncc,  while multiple ST theories

can satisfy the solar systcm constraints, the requisite va]ucs  will be unstab]e, and hcncc  arc

unlikc]yto  actually occur.

‘1’here are possildc  modifications to evade this instability. Onc of the motivations for

multip]c  S’J’ t}lcorics  is that they arise in string theories and other models which attelnpt  to

incorpora,tc  gravity with the other forces. ‘1’hc action used here may bc just an approximation

of tl]c full theory, whose other terms stabilize the evolution. An analogy would bc quantum

mechanics preventing the decay of an electron in orbit  around a nucleus. Or, on a classical

ICVCI,  a I+lass  or potential term for the scalars could frcczc the @ at some minimum, thus

prcvcnt,ing  the runaway growth of small pcrturlmtions.  Any such mollification would have to

be examined in more detail to see if stability arises. ]Iowevcr, given the problems associated

with negative kinetic terms, multiple S]’ theories that arc comsistcnt with GR in the weak-field

limit seem to bc unstab]c.

5 Conc lus ion

Multiple scalar ST theories offer the possibility of providing a new theoretical framework

in which to test GR. Hecausc such theories can mimic GR in the solar systcm, where regular

111) theories are scvcrcly limited, but yield substantially different results in other regimes, they

are especial] y valuable, Our results complement previous work, which used zero values for

the scalar fields far from massive compact objects. WC have found time cvo]ving  solutions for

the scalars which are consistent with both solar systcm tests of GIL and the cosmological field

equations. If these solutions can  bc stabilized by some means such as a potcntia]  term or a

more complctc  understanding of the quantum physics at the l’lanck scale, then they will bc a

useful probe of GR. However, without such stabilization, the only way to make these theories

agree with GR in the solar systcm  is to c.hoosc constants that  Inti]ic  the theory approximate

GR not only in the post-Newtonian approximation, but, also in other re~lmcs.  ‘J’llis  situation

is in analogy with the single  sca]ar JBI) theory, a.ncl going  to multiple scalars would have no

ad va.nt  agc.
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l“inally,  we note that  our cosmological solution in the cosmological constant dominated

regime exhibits power law growth whcJI the fields dominate, as seen in cquatio)l.  (2.43). For

power greater than 1, this yields inflation, ‘1’hc extended inflation scenario[7]  used the J B])

theory to create power law inflation, in which case the first order phase driving inflation would

eventually complete, in contrast with the G]{ case. Ilowcvcr,  the Jill) theory was inadequate,

bccausc values of the JII1)  constant which met the solar  systcm  constraint produced too many

big  bubbles, and thus an inhomogcncous  universe[l  O]. Onc might  I1OPC to use multiple scalar

S’1’ theories to give both power law inflation as WCI1 as meeting both the solar systcm  constraint

and the big bubble constraint. However, this scenario will not likely occur, as the dust va]ucs

of the fields are unstable. Should a stabilizing mechanism bc found, then further investigation

of the inflationary scenario in these models would bc warrantccl.
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